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Bending waves, perturbation modes leading to deflections of the vortex centreline, 
are considered for an infinitely long straight vortex embedded in an irrotational flow 
of unlimited extent. We first establish the general form of the dispersion relation for 
long waves on columnar vortices with arbitrary distributions of axial and azimuthal 
vorticity by a singular perturbation analysis of the Howard-Gupta equation. The 
asymptotic results are shown to compare favourably with numerical solutions of the 
Howard-Gupta equation for wavelengths comparable to the vortex core radius and 
longer. Dispersion relations are then found numerically for specific models of vortex 
core structures observed experimentally ; here no restrictions are placed on wave- 
length. The linear dispersion relation has an infinite number of branches, falling into 
two families; one with infinite phase speed at  zero wavenumber (which we call ‘fast’ 
waves), the other with zero phase speed (‘slow’ waves). In the long-wave limit, slow 
waves have zero group velocity, while the fast waves may have finite non-zero group 
speeds that depend on the form of the velocity profiles on the axis of rotation. Weakly 
nonlinear waves are described under most circumstances by the nonlinear 
Schrodinger equation. Solitons are possible in certain ‘windows ’ of wavenumbers of 
the carrier waves. An example has already been presented by Leibovich & Ma (1983), 
who compute solitons and soliton windows on a fast-wave branch for a vortex with 
a particular core structure. Experimental data of Maxworthy, Hopfinger & Redekopp 
(1985) reveal solitons which appear to be associated with the slow branch, and these 
are computed for velocity profiles fitting their data. The nonlinear Schrodinger 
equation is shown to fail for long waves, and to be replaced by a nonlinear integro- 
differential equation. 

1. Introduction 
Concentrated vortices act as waveguides capable of supporting dispersive waves 

of various kinds. That this is so has been known for a long time, waves on a Rankine 
vortex being treated by Kelvin in 1880. Experimental observations of propagating 
waves are also of long standing, although with few exceptions, such as Pritchard’s 
(1970) studies of axisymmetric solitons, the observational evidence is not systematic 
or well-documented. Recent experiments by Hopfinger, Browand & Gagne (1982) 
and by Maxworthy, Hopfinger & Redekopp (1985 hereinafter referred to as MHR) 
together provide systematic data elucidating the behaviour of non-axisymmetric 
waves on vortices. Furthermore, the former paper suggests that these waves may be 
important as mediators between turbulence caused by local agitation (such as exists 
in the ocean near the air-sea interface) and the bulk of a rotating fluid in a 
quasi-geostrophic and ordered balance. The waves appear to transport energy and 
momentum from the turbulent agitation zone into the essentially turbulence-free 
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bulk: by their occasional breakdown, turbulence is injected deep in the interior of 
the bulk fluid. 

Despite the long history of the subject, available theoretical results are scattered 
and confined to a few special cases with discontinuous velocity or vorticity distribu- 
tions, such as the treatment by Kelvin cited above and an extension by Krishna- 
moorthy (1966), but allowing for a constant axial velocity confined to the core, and 
by Pocklington (1895) for waves on a hollow vortex. 

What is most needed, in many cases, is information about the propagation of 
waves having wavelength long compared to the diameter of the vortex core. In this 
paper, we derive the dispersion relations and modal forms (eigenfunctions) for 
long non-axisymmetric inviscid waves on columnar vortices embedded in an irrota- 
tional flow, where the vortices are allowed to have essentially arbitrary continuous 
velocity profiles. A columnar vortex is one which, in the most general case, has zero 
radial velocity but non-zero azimuthal and axial velocities depending on radial 
distance from an axis of symmetry. We look for waves for which the perturbation 
velocity vector, in the infinitesimal amplitude limit, takes the form 
u = ri(r) exp [ i ( k z + m B - o t ) ] ,  where m is an integer azimuthal wavenumber, k is an 
axial wavenumber, and o is the frequency. We work out what we believe to be the 
complete solution for the case of long bending waves, which are those permitting fluid 
particles initially on the symmetry axis to be displaced from it. There are an infinite 
number of branches of the dispersion relation o = o ( k )  for such waves. Viewed in a 
coordinate system moving with the axial velocity at large distances from the axis, 
one branch has, a t  k = 0, zero frequency, phase, and group velocity. This we call the 
slow wave. All other branches have non-zero frequency, infinite phase velocity, and 
finite group velocity (which depends upon the local properties of the axial and angular 
velocities of the vortex near the axis of rotation) as k + O .  These we call the fast waves. 

The dispersion relation on the slow branch for small wavenumbers has been given, 
essentially as we find it here, by Moore & Saffman (1972). Their derivation of it 
involves fitting a BiotSavart  velocity field, with cutoff determined by a local steady 
flow found by Widnall, Bliss & Zalay (1971), to the motion of a helicoidal vortex 
filament. This procedure is ad hoc, while the present treatment is rigorous (at least 
according to accepted singular perturbation theory) and is therefore, in our view, 
preferable. 

Waves in the fast branch are, in fact, neutrally propagating centre-modes, whose 
structure for unstable concentrated vortices has been explained by Stewartson & 
Brown (1985) and they may be found by an analytical procedure similar to that used 
in their problem. Furthermore, analysis of the centre-mode behaviour is not much 
influenced by the azimuthal wavenumber, m. By contrast, our method of finding the 
slow wave structure depends on ImJ = 1, so it applies only to bending waves : it is 
conceivable that the slow branch exists only in the case Jml = 1, but we as yet have 
no evidence that this is so. 

Our treatment of the slow branch for JmJ = 1 is to be found in $3  and that for the 
fast branches for all Jml 2 1 in $4. In  both cases, we find that the asymptotic results 
agree very well with corresponding information from direct numerical integration of 
the relevant eigenvalue problem. Our comparisons are done for flows selected from 
the four-parameter family of vortices with axial velocity, W ,  and azimuthal velocity, 
V ,  given by 

W ( r )  = W, exp ( - a, r 2 ) ,  
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Similar forms have been used frequently to  fit experimental data. For example, 
Maxworthy et al. (1985) find that the choices W, = 0.4, a1 = 0.54, a, = 1.28, 
r/2n = 1.39 fit their data. 

Leibovich & Ma (1983) considered the propagation of bending waves of finite 
amplitude, assuming weak nonlinearity, and attempted t o  use this solution to fix the 
undetermined constant in the local induction approximation (LIA) to  the Biot- 
Savart formula (this approximation is conveniently found in Batchelor 1967). These 
waves are slowly modulated about a centre carrier wavenumber by an amplitude 
governed by the cubically nonlinear Schrodinger (NLS) equation. MHR concluded 
that the solutions found may be related to experimental observations for short waves, 
but bore little relation to  most of the waves they observed. The waves considered by 
Leibovich & Ma were determined by numerical solutions on the primary fast branch 
of the vortex ( V )  with W, = 0, a, = 1. Soliton solutions to  the NLS equation were 
sought and found to be possible only in a band (‘soliton window’) of carrier (axial) 
wavenumbers in the approximate interval 0.68 < k < 1. The data of MHR clearly 
show that most waves observed were on the slow branch. We therefore reconsider 
the problem of Leibovich & Ma in $5, and look for soliton windows on the slow branch. 
This is carried out numerically for a wide range of wavenumbers (not just for long 
waves) for two examples of ( V ) ,  W, = 0, a2 = 1, r/2n = 1, the case considered by 
Leibovich & Ma and called ‘flow A ’  in this paper, and W, = 0.4, r / 2 n  = 1.39, 
a1 = 0.54, a, = 1.28, of MHR called ‘flow B ’  here. Now soliton windows are found 
centred on Ikl = 0 with short-wave cutoffs, and in other windows comprising intervals 
in k not including k = 0. 

The nonlinear Schrodinger equation fails to provide a valid description of wave 
motion for very long carrier waves on the slow branch. The failure may be traced 
to  a singularity in the dispersion relation, which formally leads to infinite values of 
one of the NLS coefficients. This is corrected in $6, where the NLS is found to be 
replaced by a nonlinear integrodifferential equation. Thus the modulation envelope 
is no longer locally determined, but is controlled in part by events at distant portions 
of the vortex, as would be predicted by the Biot-Savart formula. This linkage of 
remote portions of the vortex may be attributed physically to the presence of an outer 
irrotational flow of infinite extent. 

The modal amplitudes, t?(r), for slow bending waves disturb the entire core, but 
those on the fast branch are concentrated near the axis of rotation as the wavenumber 
decreases. As a consequence, the presence of long fast waves may be difficult to detect, 
while long slow waves should be readily detectable. We also find features of the 
geometry and motion of phase fronts, which take the form of twisted ribbons, that  
distinguish between long fast and slow bending waves. These features are explained 
in $ 7, which also contains additional concluding remarks. 

2. Problem formulation 
We postulate the existence of a stable columnar vortex embedded in an incom- 

pressible and inviscid fluid of infinite axial extent. I n  a cylindrical ( r ,  0, z)-coordinate 
system this motion is described by the velocity vector 

u= (0, V ( r ) ,  W(r ) ) .  (1) 

While not required for all of our subsequent work, we assume that the radial extent 
of the fluid is infinite, that the vorticity associated with (1) decays exponentially fast 
as r-fco, and that the circulation about the axis of rotation approaches a non-zero 
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constant in this limit. The vorticity is then concentrated within a characteristic 
distance, a,, of the axis, which we take as the unit of length. A characteristic speed 
V, of the flow (1) is selected as unit for velocities, and a,/ V, is taken as unit for time. 
Henceforth, all variables are taken to  be dimensionless with the scales indicated. 
We adopt that coordinate system in which limr+a, W ( r )  = 0, and we assume that 
limr+m r V = r/2x in our dimensionless variables. 

Infinitesimal perturbations to (1)  correspond to  isolated neutral waves; there are 
by hypothesis no contiguous unstable modes. The velocity vector is 

v = U(r)+su(r,B,z,t; E), (2) 
were E is a small amplitude parameter. It is assumed that the perturbation velocity 
vector can be expanded in a power series in E 

u(r,O,z,t; 8) = ( u , v , w )  = ul+Eu2+E2U2+ ... , (3) 
with a similar expansion for pressure. 

The Euler equations require u(r, 8, z, t ; E )  to satisfy the equations 

au 
at 
-+ Lu+VP = sN, 

where L is the matrix differential operator 

DW 0 0 
with a, D and D, defined to  be 

(5 )  

/ is the identity matrix and N = ( N l ,  N2 ,  N 3 )  is the bilinear vector with components 

av av 

aw v a w  

The linearized problem, (4) with 8 = 0, admits solutions in the form of waves 

u = Ali ( r )  exp (i$) + C.C. 

p = Afi(rj exp (i$) + c.c., J 
'1 

where C.C. represents the complex conjugates of the terms displayed and $ is the phase 
function 

$ = kz+me-wt,  (9) 

which depends on the axial wavenumber k (real), the azimuthal wavenumber m 
(integer), and the frequency w .  The wavenumber vector, 

K = V$ = (0, m/r ,  k ) ,  
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is normal to surfaces of constant phase: between any two constant values of the 
radius these surfaces take the form of twisted ribbons. 

For fixed k and m, the linearized problem is an eigenvalue problem with eigenvalue 
w ( k ,  m) and corresponding eigenvector u(r ) .  This linear problem will be treated in 
detail in $33 and 4, with emphasis on bending waves, which are those with m = f 1, 
and on the long wave limit k+O.  

Boundary conditions on the solution to (4) are taken to be 

lim u = 0, 
r+-m 

and single-valuedness of u and the vorticity vector on the axis r = 0. The latter 
requirements imply that, if a solenoidal vector u differentiable a t  r = 0 is expanded 
in the Fourier series 

m 

u = d m ) ( r ,  x ,  t )  eimo, 
m---m 

then w(m)(O, z ,  t )  = 0 (m * O),  ( I O U )  

aw(m) 

ar (0, z ,  t )  = 0 (for all m), 

~ ( ~ ' ( 0 ,  z, t )  = ~ ( ~ ' ( 0 ,  z ,  t )  = 0 (lml =/= I ) ,  

a a 
- U ( ~ ) ( O ,  z, t )  = - d m ) ( O ,  z ,  t )  = 0 
ar ar 

(10c) 

( 1 0 4  (Iml = 1 ) .  

Bending waves permit fluid particles on the axis of rotation to be deflected off the 
axis : from (10 c )  this is possible only when (ml = 1. 

We identify u1 with the solution (8) of the linearized problem for a particular 
constant wavenumber pair k = k,, m = m, and seek higher-order terms in (3) by 
substitution into (4). The series (3) will not be well-ordered for et = O( 1 )  unless secular 
terms are suppressed. This can be done by allowing A to vary slowly with time or 
space or both. Here we permit modulation in both space and time: this may be 
accomplished, as is well known, by introducing a slow space scale 

2 = e(x-Cgt) ,  (11) 

112) and a slow timescale 

With u1 and p, given in the form (8), the problems for U, and U, are of the form 

7 = ezt. 

v-u, = 0, 

(14) 
V'U, = 0. 

In  these equations, the Rj, j = 1 , 2 , 3  are bilinear vector-valued functions of their 
arguments, and C, and C, are real and constant matrices. Particular solutions to 
these inhomogeneous equations free from secular growth exist if the right-hand sides 

20 Y L M  173 
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are orthogonal to  the adjoint linear problem. This requirement determines the linear 
group velocity Cg and requires A to  satisfy the cubic Schrodinger equation 

with r; and fi determined from (14) as integrals of the scalar product of the adjoint 
solution vector with C, u, and R, respectively. The numbers C, and ,k may be found, 
alternatively, from the dispersion relation, with C, = w'(k,) and I;  = $"(k,), since the 
two methods are equivalent. As the carrier wavenumber, k,, tends to  zero, the cubic 
Schrodinger equation fails and must be replaced. This situation is considered in $6. 

The procedure that we have followed is to reduce the problem for 0, to a single 
homogeneous second-order ordinary differential equation for the radial component 
&,(r).  Similarly, we look for the various particular solutions for U, and us by first 
reducing the problem to a second-order inhomogeneous differential equation. 
Particular solutions for the resonant cases have the same ordinary differential 
operator that  acts on &,(r) : non-resonant particular solutions have different 
differential operators. 

The problem for dl may be put in the following form: 

L&, = D(SD, 6,) - (1  + y-la+ y-,b) G, = 0, U6a)  

with boundary conditions 

&,(0) = 0 if Im( =t= 1, 

D&,(O) = 0 if Iml = 1, 

&,+0 asr+oo.  

where 

I S = r2(m2 + k2r2)-1, 

y = kW+mQ-w,  

a = rD{(m2+1%2r2)-* [krDW+mD, V ] ) ,  

b = - 2kQr-1S[krD, V - mD w]. 
Equation (16a) was derived first by Howard & Gupta (1962) and we refer to it as 
the Howard-Gupta equation, or HGE. The coefficients in (16a),  a,  b,  y ,  and S, may 
be given in an alternative way (Leibovich 1986) that  can be helpful in making physical 
interpretations. These are 

a = r 2 V ' { F 2 ( K  x r)/lrclZ}; b = - 2 ( ~ * 0 )  ( K ' < ) / ~ K I ~ ;  
y = K * U ( r ) - w ;  8 = i / l K l z  

where K is the wavenumber vector 
K = v+, 

r = curl U is the unperturbed vorticity vector, and 0 = ( 0 , 0 , Q ( r ) )  is the angular 
velocity vector of a fluid particle about the axis of symmetry in the unperturbed 
motion. 

If the interest is on bending waves, then we select m to be + 1 or - 1 in +. The 
symmetry w (  - k ,  -m) = -w(lc, m) is required for the perturbations to be real, and 
may be verified directly from the form of the HGE when we restrict attention to  real 
w (neutrally stable modes). The symmetry implies that  the complete dispersion 
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relation may be constructed for given Iml either if w is known for positive m and all 
real k or if o is known for positive k and both m = Iml and m = -1mI. 

For columnar vortices with arbitrarily prescribed velocity profiles W(r)  and V(r ) ,  
and arbitrary carrier wavenumbers k,, one must solve the HGE numerically. 
Higher-order corrections require further numerical work to  compute Cg(ko), and the 
Schrodinger equation coefficients $k,) and v^(k,). This has been carried out for two 
examples taken from the four parameter family of velocity profiles 

The results of these computations are reported in $5,  using a numerical method 
differing in inconsequential ways from that described in Leibovich & Ma (1983). 

The case of long carrier waves, that  is, ko+O, is amenable to  analysis, and solutions 
of the HGE for bending waves for a general class of vortices can be found without 
reference to numerical approximations. This is described in $3  for slow waves. Fast 
waves are treated in $4, where i t  is found that solutions can be found for all m and 
so the treatment there is not specialized to  bending waves only. 

3. Long waves on the slow branch: results for general vortices 
Numerical evidence indicates the existence of several branches of the dispersion 

relation for particular basic vortex flows. For one branch, both the frequency w --f 0 
and the phase speed c = w/k+O and group speed C, = do/dk+O as k+O. For the 
remaining branches, w+mQ(O), c+ 00 as k+O. A branch in the first category we call 
a slow wave, those in the second category we call fast waves. Slow waves are 
considered in this section, fast waves are treated in $4. 

We seek solutions of the HGE (16a) subject to boundary conditions (16b) and 
asymptotically valid for Ik( +O.  The basic flow ( 1 )  is arbitrary in form, except for the 
restrictions stated in the beginning of 32. The treatment in this section is limited to 
bending waves, so Im( = 1 .  Both signs for m may be dealt with a t  once if we set 

p = k/m, u = o / m ;  (19) 

then the HGE (16a) becomes 

where the quantities 7, a, and b are found by the replacements k + P ,  m+ 1 ,  and 
w + u  in the expressions for y ,  a, and b in (17) and the symbol x is used for ul. 

The limit equation, with /3 set to zero in (20) is 

r2X"+3rx' - [ (m2- 1 ) +  (r/(Q-a))d/dr(rQ'+2Q)]x = 0. (21) 

If m2 = 1 ,  the general solution to  (21) is 
dr x = C, [Q(r ) -u ]+C, (Q-u)  

If Q(0) is finite, as we assume, the coefficient of C, is singular a t  r = 0, and we therefore 
take C, = 0, and C, = 1 .  We next assume that Q'(0) = 0;  this is a physical requirement 
for an axisymmetric vortex arising from a flow with viscosity. 

Since Q'(0) = 0 and limr+m Q ( r )  = 0, X(r) satisfies the boundary condition a t  the 

20-2 
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origin and x+-u as r+co. Therefore the boundary condition as r-f co is satisfied 
if we choose u = 0 and the eigenfunction as x = Q ( r ) .  The form of the HGE then 
suggests a perturbation expansion in powers of P, 

x(r; PI = X o W  +PXl(T) +P2X2( . )  + . . . > 

u(P) =pu,+p2u2+ .... 
with x o ( r )  = L?(r). 

This process fails a t  O(p2)), it  being impossible to satisfy the boundary condition 
at infinity. The failure can be traced to the existence of more than one lengthscale 
in the problem, one selected as unit for length and based on the core diameter and 
a second, ao /k ,  based on the wavelength and tending to infinity as k+O.  We therefore 
introduce an outer variable 

P = IPI r ,  (23) 
and the HGE in the outer variable is 

- ( ~- px)-x=O, 
dp 1 +p2 dp 

to all algebraic orders for p = O( 1)  and 1/31 + 0 under our assumptions of exponentially 
decaying vorticity as r + 00. The outer solution, satisfying the boundary condition 
at infinity, is 

(25) 
d x = W I )  - Kl(P), 

dP 

where Kl(p) is the modified Bessel function of order 1. The outer expansion is therefore 
developed as an asymptotic expansion of B(IPl), 

wm = ~l(IPI)+B,(IPI)+..-' (26) 
each with the same coefficient, Ki(p). As p+O, 

where ye is Euler's constant, 0.5772 . . . . 
The inner solution, to lowest order, is 

as r+co, x = Q ( r )  - ~ 

2nr2 
r 

and (27) and (28) match if we take 
P2r 

I 27c' 
B =-- 

The outer solution then forces a term 0(P2 1nIPI) in the inner eigenfunction and 
in u. To this order in the inner solution no further terms in (26) need to be considered. 
We therefore take, in the inner region, 

If we let 

then 
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and the higher-order terms, xi ,  i = 1,2 ,3  satisfy 

where R, = r2WII+3rW’-(W--al)G(r), 

-r(r(r2D)’)‘-2r(r2D)’+G(r)  
rW(rW)’  
D 

R =-  
2 -  

and R, = G(r)  u,. 

Boundary conditions at the axis require 

&(O) = 0. 

Matching with the outer solution requires the following asymptotic behaviour as 
r+m,  

(32c) 
r 

x2(r )  - -{1nr+ye+t-ln2}, 4K 

The solution for xo has already been found to be Q ( r ) .  The particular solution to 
(30b) is 

which clearly satisfies the condition (31) on the axis, and can be made to satisfy (32b) 
by taking u1 = 0. 

x1 = - U, + W ( 9 ,  (33) 

The solution of (30c) can be written as 

x 2  = - r 2 + X z ( r ) ,  

where Xz is found by reduction of order to be 

(34) 

The function xz  satisfies the axis conditions. Making use of the assumption that 
SZ - r/2xr2 as r + 00, we find that the inner integral in (35) behaves asymptotically 
like 



604 

0.01 

S. Leibovich, S. N .  Brown and Y.  Pate1 

- 
/' - 

// 

0.4 

0.3 

0.2 

0.1 

1 .o 2.0 
k 

' curve 
curve 

(dashed) 
(solid) is 

FIQURE 2. Frequency, phase and group speeds for the case of figure 1, as determlned by direct 
numerical computation. 

With the large r behaviour given by (36), xz may be seen to have the following 
asymptotic behaviour : 

[In r + K +  9. 138) 
r xz --fT -- 4R 

Comparing (38) with (32c), we see 

r 
g2 = -- [K+In2-yy,]. 

4R (39) 

The solution to ( 3 0 d )  satisfying the axis condition is 
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FIaURE 4. As in figure 3, but showing a larger wavenumber range. 

- 
- 
- 
- 
- 

I I I I I I I I 1 

and applying ( 3 2 d )  implies that 
r 

g =- 
4x' 

Thus, to O(p2) the dispersion relation is 

where we have replaced by Ikl. 

FIGURE 3. As in figure 1 ,  but for flow B. The dashed curve is numerical, the solid curve is the 
asymptotic formula (41). 



606 

1 

0.8 

0.6 

0.4 

0.2 

0 

-0.2 

- 0.4 

8. Leibovich. S. N .  Brown a d  Y .  Pate1 

I- I 

-3  -2 - 1  0 1 2 
k 

FIGURE 5. Like figure 2, but for flow B. 

r 

3 

r 

FIGURE 6. Eigenfunctions corresponding to the case A shown in figure 1, for k = 0.10, found from 
both direct numerical computation and from the asymptotic analysis. The results overlap, except 
for small differences seen as a thickening of the curve for larger values of r .  

We may also construct a composite expansion uniformly valid in r from the results 
found above, with accuracy to O[k2 In (l/lkl)]. This is 
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or, written in terms of the vortex velocity profiles, 

For reference, we note that the constant K for the family of profiles (18) is given 
by 

K = -  ln($az)+ye-- 
2 " 47c2 a1 r2 (43) 

The formula (41) for the dispersion relation has been given by Moore & Saffman 
(1972) (with obvious changes for a vortex having a discontinuous vorticity field, with 
zero vorticity for r > a,). This derivation depends on the utilization of a Biot-Savart 
formula with cutoff, and is determined by matching this to a special vortex filament 
configuration (the helical vortex). The present derivation seems to us to  be on more 
fundamental ground. 

We note that waves of extreme length ( k + O )  have zero phase and group velocity 
relative to  the fluid at infinite distances from the axis of rotation. Furthermore, as 
pointed out by Maxworthy et al. (1985), the phase and group velocities are in the same 
direction and the ratio of phase speed, c ,  to  group speed, Cg, is $ in the limit k+O.  

Figure 1 shows a comparison between the asymptotic formula (41) and numerical 
computations of the dispersion relation for the slow branch. The results shown are 
for the vortex (18) with W, = 0, az = 1 ,  r = 271, and m = - 1 (the corresponding 
result for rn = 1 is found by putting w+--0) .  The agreement is acceptable for Jkl up 
to about 0.2 and very good for lkl < 0.15. Figure 2 gives the frequency, phase speeds 
and group speed for the same case, according to direct numerical computation. For 
flows with W =I= 0, the dispersion relation is no longer exactly symmetric in k .  Figures 
3 and 4 compare (41) with results from a numerical integration of the HGE for the 
flow (18) with W, = 0.4, a, = 0.54, a2 = 1.28, r = (1.39) 271, which Maxwothy et al. 
(1985) cite as a fit to  their experimental data. Figure 5 is like figure 2, but for the 
case shown in figure 3. 

Figure 6 shows the eigenfunctions determined by numerical integration and by the 
composite asymptotic result (42) for the case shown in figure 1 ,  with k = 0.10. Two 
curves are shown but lie one on top of the other. For smaller k ,  the results are even 
more accurate. 

4. Long fast waves and centre-modes: results for general vortices 
The analysis of the previous section yields only one branch of the dispersion 

relation. It appears incapable of capturing the fast-wave modes. Our numerical 
experiments have shown that the eigenfunctions for fast modes, rather than decaying 
away from the axis on a radial scale comparable to  the vortex core, decay much faster. 
Thus, in addition to the scales a , / k  and a,, there is yet another and smaller scale 
of importance here. I n  fact, the eigenfunctions are concentrated in the region of the 
vortex axis that shrinks to zero as k+O.  This suggests that these modes are centre- 
modes, similar t o  the weakly unstable centre modes recently studied by Stewartson 
& Brown (1985). An early hint that  this might be so is given by Leibovich & Ma's 
(1983) computations showing that w+rnQ(O) as k+O so y(O)+O: this is the 
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identifying characteristic of the centre-modes of Stewartson & Brown. Their descrip- 
tion requires a radial stretching focusing on the vicinity of the axis, the rapid 
variations being forced by the small minimum in Iy(0)l achieved by centre-modes for 

Away from the axis, (22)  still holds, when Iml = 1, but now there is no compelling 
reason to set the second term, which is singular as r+O, to  zero. This forms the outer 
solution for the Iml = 1 centre-modes, but it is not necessary to restrict ourselves now 
to the case (m( = 1 .  It turns out, in fact, that  the first few terms in the inner expansion 
do not require the detailed behaviour of the outer solution, but only its general form, 
and the latter can be specified a priori by a Frobenius series for arbitrary m. 

1/31 + 1 .  

It is convenient to consider 
Y = rx (44) 

as dependent variable in the HGE (20) ,  in which case i t  assumes the form 

where ti, b,  7 have already been defined, and (for all m) 

y(0) = y(w) = 0, 146) 

and we allow m to be any integer. To force out the leading approximation to the 
eigenvalue o and eigenfunction y, we need only consider the neighbourhood of r = 0. 
The appropriate stretching will emerge in the course of the analysis. Centre-modes 
are characterized by y ( O ) + O ,  so we chose o to make this condition hold to lowest 
order, and write 

a = w/m = Q0+,8W,-~(52,+,8W,) A(@) ,  

where we have written 
(47 ) 

52, = 52(0), 52, = O”(O), w, = W(O), w, = w”(0). 

We now regard the number A(,8), assumed to vanish as I,8I +O, as replacing o (or a) 
as the eigenvalue, and i t  will simultaneously determine the stretching of r .  We will 
find that A cc 1/31 as I/3I+O unless W, = 0, in which case A a /3,. We also note here 
that regular neutral centre-modes are possible in the vicinity of wavenumbers with 
/3 = W,/252,, which is not generally small, and we shall return at the end of this 
section to  consider these modes. 

The functions 6, band 7 may be expanded in Taylor series near r = 0 with leading 
terms (temporarily retaining terms which vanish as p+O) 

t i(r)  = 2r2[pW,+20,-2,82520], (48a)  

b(r) = - 2/3r2Q,(2@?, - W,), (48b) 

y ( r )  = &4Wz+52,)(r2+A).  ( 4 8 4  

We now stretch r by taking 
r2 = As,  y(r) = Y(s) ,  (49)  

assuming 0 < A -4 1 (the case with A < 0 leads to unstable centre-modes with critical 
layers, and is assumed, based on the work of Stewartson & Brown (1985), not to be 
possible near /3 = 0) ,  and substitute (49)  into (45) .  To leading order, (45) becomes 

2,8252, - 252, -,8 W, s 2,8!2,(2~52, - W,) s + -1 Y = 0. 
52,+,8W, l + s  A(52,+/3W,)2 (1+sj2  
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This equation determines the structure of the eigenmodes near r = 0, and the possible 
values of A describe, according to (47), the leading approximation to the frequency 

We assume that 52, =k 0 and let ,!+ 0. There are then two cases to consider: W, =i= 0, 
and W, = 0. In the first case, we take A cc [,!I and in the second we take A cc ,!,. Both 
can be treated simultaneously if we retain both factors in the expression (2,!9, - W,) 
in the last term of (50). We therefore introduce an order p" parameter y through the 
relation 

w .  

and (50) becomes (as ,! + 0) 

S 
s2yII+sY+ 

This equation is reducible to a hypergeometric equation, with solutions vanishing 
at  the origin in the form 

for y > 0, where F is the hypergeometric function and 6, 6, and E are given in terms 
of y and Iml by 

Ci = -y+WmJ-$(m2+8):, 6 = -p+;tlml++(m2+8)~, E = l + ( m [ .  (53b)  

The procedure of Stewartson & Brown (1985) applies here without change for 
(ml + 1 .  We match (53a)  to the solution of the Howard-Gupta equation with 
replaced by its leading-order term, go = 9,. This has a Frobenius series about the 
origin in the form A,  r P +  A ,  r -P where 

p = (m2+8)i 

providedp is not an integer. In  the latter case, which arises only for m2 = 1 and yields 
p = 3, the solution is of the form 

A, r3 + A , [ F ~  + b, r3 In r ] .  (54) 

The match between the outer and inner solution is possible only if 6 is chosen to be 
a negative integer or zero. This determines y as 

p = y ( M ,  m) = t(lml+ (m2 + 8)i) + M ( M  = 0, I ,  2, . . . ). (55) 

Furthermore, the hypergeometric series then terminates and becomes a polynomial 
of degree M .  We may now solve for A from (51). Since the transformation from r to 
s has a real inverse only if A > 0, an acceptable solution is possible only if the 
condition /352,(2,!9,- W,) > 0 is met. The frequency w now follows from (47), (51) 
and (55), and is given to this order by (assuming 9, =+ 0 and replacing ,! by k / m )  

with k9,(2k9,-mW2) > 0, (56b)  
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where p ( M ,  m) has been written out in full. If W, = 0, condition (56b)  is automatic. 
If W, + 0 and k+O,  we may replace (56b) by 

- km52, W, > 0. (56c) 

The term of O(k2)  is accurate only if W, = 0, and should be included in (56a) only 
in that case. Note, first, that this formula holds for all integral values of Iml, and is 
not restricted to bending waves. Second, the phase velocity of long waves is 

w mao W2QO - 252; 
SZ, M ( M ,  m) m a ,  M(M,  m)  k’ 

c ( k )  = - = -+ Wo+ 
k k  

where the mode parameter E ( M ,  m) is defined to be 

and the group velocity 

dw W2Qo - 452; k 
52, M ( M ,  m) dk mQ, M ( M ,  m) ’ 

C,(k) = - = Wo+ 

(57) 

and these results are applicable only for waves satisfying (56b). As anticipated, c - t  co 
as Ikl + O  for these fast waves. This is in contrast to the slow bending waves, for which 
c(0) = 0; in further contrast, the group velocity for k = 0, while finite, is non-zero 
for fast waves unless Wo and W, both vanish (which of course they do for the 
important special case W(r)  = 0). Furthermore, if, as will be the case for flows with 
jet-like axial velocity distribution with 52, < 0, W, < 0 when Wo > 0, the higher 
modes of fast waves have smaller group speed than the lower modes. 

Eigenfunctions corresponding to various modes, M ,  are identified, as in Sturm- 
Liouville theory, by the number of their zeros. Thus the primary mode, having 
M = 0, has no zeros, M = 1 has one zero, M = 1 has 1 zeros, and so forth: the 
hypergeometric functions involved are polynomials of degree M .  The primary 
einenfunction near r = 0 has the form 

(59) 

which, in the case of Im( = 1 reduces to 

Note that the scaling of the radial variable depends on both mode number M and 
Iml, since r2 = As, and A depends on these parameters. Thus, for M = 0, Jml = 1 ,  the 
case above, and assuming for definiteness that W, 4 0, 

For the second eigenfunction, we have a slightly different scaling factor; thus for 
Iml = 1, M = 1, 

Figure 7 shows the first five branches of the dispersion relation for the fast branch 
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FIGURE 7. First five branches of the dispersion relation for fast modes for the flow A and m = - 1.  
Results are from direct numerical computation. The portions of the curves for k < 0.1 are inferred 
(not computed). 

and m = - 1, for the flow (18) with a2 = 1 ,  W, = 0, I'/~R = 1 ,  obtained by direct 
numerical solution of the Howard-Gupta eigenproblem. Figure 8 shows the corre- 
sponding eigenfunctions for k = 0.01. Figure 9 gives the first two modes for the flow 
(18) with W, = 0.4, I'/27t = 1.39, a1 = 0.54, a2 = 1.28, showing comparison between 
results from direct numerical computation and the asymptotic eigenfunctions, for 
k = 0.1 and k = 0.2. A comparison between the numerically determined eigenvalues 
for the first five modes and the asymptotic formula (56a) is given in table 1 for flow 
(18) with W, = 0, a2 = 1, r / 2 ~  = 1 for k = 0.2, m = - 1 ,  corresponding to figure 7. 
Another kind of comparison is given in table 2 for the flow of figure 9. I n  all cases, 
the agreement between asymptotic formulae and numerical computations is good. 

4.1. Higher approximations 
We may proceed further with the expansion of the eigenvalues and eigenfunctions. 
Rather than do this for the general case, we illustrate by considering the examples 
(18) with W, = 1 ,  a1 = a2 = 1 ,  and Iml = 1 .  For this example the condition (56b), 
which must be satisfied if centre-modes are to exist, is kT/m > 0. For the primary 
mode with eigenfunction (59), the eigenvalue (56a) is 

mI' 4k kT 
w=-+- - ,  Iml = 1 ,  - > O ,  

2R 3 m 

where we note that the O ( k 2 )  term (proportional to  Q,) is not applicable because 
W2 =/= 0. To find the O ( k 2 )  term, we must find A to  O(p2). This is done by keeping the 
terms of relative order ,5 that  have so far been neglected in (50), and insisting that the 
correction to  the eigenfunction vanish as s+ 00, as required by the matching. 
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FIGURE 8. Eigenfunctions for the first five modes for k = 0.01 for the example of figure 7. 
(a )  Primary mode, ( b )  mode 2, ( e )  mode 3, ( d )  mode 4, ( e )  mode 5 .  
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, I 1 I 

0.2 0.4 0 0.04 0.8 
r r 

FIGURE 9. (a) First two fast m = 1 eigenfunctions for the flow B with k = 0.1, showing comparison 
between direct numerical computation and the asymptotic eigenfunctions. ( b )  As in ( a )  but for 
k = 0.2. 

M w ,  numerical w ,  analytical 

0 - 1.012938 - 1.013 333 
1 - 1.006514 - 1.006666 
2 -1.003931 - 1.004000 
3 - 1.002637 - 1.002 666 
4 - 1.001 899 - 1.001 905 

TABLE 1 .  Frequency w a t  k = 0.2 for the flows of figure 7 for the first five modes, comparing 
the results of direct numerical computation to the asymptotic results of (56a)  

The relations (48) must be extended by one further term, and we now write 

y ( r )  = - m A [ p s + ~ ( i + s - $ ) ] .  

To the required order, (45) now becomes 

2xCp 4xps As2 
r r ( i + s )  +--I 3 ( i + s )  

s 2 y + s y ’ +  

8xPs 2As2 sxp 5 
r(i +a) +---I} 3( i  +s) Y = 0. (63) 
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k w ,  numerical w ,  asymptotic 

0.15 1.195 1.196 
0.25 1.319 1.323 
0.35 1.440 1.448 

TABLE 2. Eigenvalues for the m = 1 primary fast branch for flow (18) with W, = r /2n = 
a, = a2 = 1, comparing results of direct numerical calculation with the asymptotic formula (66) 

In (63) we now set 
Y ( 4  = Y0(4--PY,(4 

A = @.nP/T) + 4 ( 2 x P l n 2 ,  

where Yo($) has previously been found. The equation for Y,(s) is 

(64) 

s2y;+sy;+ 1 2s +A) Y, ( 4 l + s  ( l + s ) 2  

8-1 2 9 2  

s + l  9 1 + s  
- -2YOl+$ $s-l+----- 

If the right-hand side of this equation is denoted Yo(s) X(s), then it is easy to show 
that Yl(s) is finite at the origin and decays at infinity only if 

s,” x(s)syE(s) ds = 0. 

This condition finally reduces to 

so that (62) is now corrected to read 

If instead of setting W, = 1 in (18) we keep it as an arbitrarily prescribed parameter, - .  

(66) is replaced by 

with the requirement that Im( = 1 and W, k r / m  > 0. For the second mode, a similar 
argument leads to 

2.n 12.n 

When W, = 0, (67) and (68) agree with the results (60b)  and (61) for A withp = 2 and 
3 respectively. In these cases, i t  is not difficult to extend the dispersion relations for 
p = 2 to include a further term in p. The result applies to the primary mode and is 
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for lml = 1, arbitrary Q ( r ) ,  but W, = 0. The first logarithmic term to appear in (69) 
is ks log (1  / \ & I ) .  

4.2. Short-wave centre-modes 

The search for centre-modes has hinged upon the smallness of the quantity 

PQo[2PQo - Wzl, 
occurring in (48b). This is small for p small, the cases explored so far, but i t  can also 
be made small for 2p52,- W, small, which for W, =k 0 will be a t  values of p that are 
not small. Centre-modes therefore might exist for values of p near W2/252,, which 
corresponds to the region in which (for certain velocity profiles) Stewartson & Brown 
(1985) found weakly unstable centre-modes. 

To explore the possibility of neutral cenre-modes in this wavenumber range, we 
set p = W2/2Q, in (52) ,  except for the factor ( W,- 2pQ,)/A. To leading order the 
equation becomes 

- 452, Q2 
where A =  

252, 52, + wz, ' 

The analysis then follows the plan previously employed 

- 1  -g w;-2pSz0 w, < 0. 

If this condition is satisfied, the dispersion relation is 

and succeeds provided 

(70) 

mW0 W2+ im Wi - kQo W, 
w = mQo+- 

252, (52, + W p - 2 , )  /2(/2+ 1)  ' 

5. Solitons and soliton windows 
5.1. Solitons and interpretation of experimental data 

The nonlinear Schrodinger equation (15) has solutions representing solitons (and thus 
leading to persistent motion for long time intervals) provided the product $C > 0 
(Whitham 1974), where @ and v̂  are the coefficients appearing in (15). If this condition 
does not hold, then an initial disturbance having an envelope that vanishes a t  infinity 
will ultimately decay due to dispersion. The single soliton solution of (15) takes the 
form of a long envelope modulation of shorter waves and may be written as 

where 

A ( Z , r )  = A, ei@ sech~o($)i(Z-Cr)+A},  

C 

4b 

(73) 

(74) 

The real parameters A ,  (positive), C, A ,  and @, are determined by initial conditions. 
Of these, A and @, represent the invariance of (15) to shifts in the origin of 2 and 
r ,  while C and A, depend upon the spatial form of the initial disturbance. 
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I n  terms of our original space and time variables, the velocity vector to O(e)  is 

U ( T ,  0, t) = U ( r ) + A , ~ f i , ( r )  expi(Kz+mO-Wt) sech[eA,(P/2,.4)4 (z-ct)], (75) 
- 

where c = C,+EC, 

EC L= ko+- 
2/2 ' (76) 

where we have set d = @, = 0. Thus the nonlinear effects result in a correction to 
the wavenumber, changing i t  by an O(e) amount from the wavenumber k, of the 
carrier wave t o  E, a correction of the frequency from the carrier frequency w, to ij, 
and a correction of the group velocity from the carrier value C, to  C. 

Notice that given the linear dispersion relation, w(k), and the form of k, 

so that in (76) (78) 

and 
dw - dw e c  d2w 
- (k )  = - (ko)+-- (k,) 
d k  dk 2$ dk2 

- 
= cg + €6' = C. (79) 

Thus the velocity of the modulation envelope corrected for nonlinear effects is just 
the linear group velocity associated with wavelets of wavenumber E. The only 
essential nonlinear content of the solution form (75) is then the envelope shape, with 
the sech functional behaviour and a length that is inversely proportional to the 
disturbance amplitude €A,, and a nonlinear frequency correction proportional to 

These considerations show that a linear interpretation of experimental observa- 
tions should be very good provided the amplitude parameter, do, is small. In  
particular, measurement of the length of wavelets propagating through the group 
yields E, and measurement of the speed of the group gives the linear group speed, 
or the slope of the linear dispersion relation w(E) .  A measurement of the phase speed 
of wavelets ~ ( 2 )  gives 

Thus the dispersion relation, w(&) can be determined from the phase speed and length 
of wavelets provided the measurement yields speeds that are not too small. For long 
waves, or Esmall, phase speed measurements are not reliable unless (eA,)2/Eis small. 
If this is not the case, one could attempt to determine w ( E )  by measurement of the 
group speed and constructing w from it. It turns out that  in our case the nonlinear 
Schrodinger equation itself fails as IC- tO,  so that we cannot use results obtained 
from it as guidance to  interpretation of experiments. The failure of the nonlinear 
Schrodinger equation as k+O is discussed in 56. 



Bending waves on inviscid columnar vortices 

FIQURE 10. Nonlinear Schrodinger equation coefficients for case A discussed in the text. 

617 

-3  -2 - 1  0 1 2 3 4 

FIQURE 1 1 .  As in figure 10, but for case B. 
k 

5.2. Soliton windows : numerical results on the slow brunch 

The coefficients C; and v̂  in (15) are functionals of the columnar vortex velocity vect,or 
U(r)  and depend parametrically on the carrier wavenumber k,. For a given vortex 
U(r) ,  carrier waves may or may not admit solitons for a prescribed value of k,, since 
solitons are possible only if ,3 > 0. For example, Leibovich & Ma (1983) searched 
for solitons on the primary fast branch for ImJ = 1 for the profile (18) with 
01, = 1, W, = 0, r = 2x, and found that solitons were excluded for 1k1 Q k, and 
Ikl 2 k, with 

k, x 0.68 and k, x 1 .  

Solitons were possible in the ‘window’ k, < k < k2. 
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We have repeated this search for Iml = 1 but this time exploring the slow branch. 
Two examples have been examined, both special cases of (18). One example, case A, 
is the vortex with W, = 0, r = 2n, previously studied by Leibovich & Ma. The second, 
case B, has a1 = 0.54, a2 = 1.28, W, = 0.4, r = (1.39) 2n, and was found by 
Maxworthy et al. (1985) to fit data in their experiments. 

Numerical results for the nonlinear Schrodinger equation coefficients ,L2 and v̂  for 
m = - 1 as functions of wavenumber, are plotted in figures 10 and 11 for cases A 
and B respectively. 

There is a soliton window for case A for (kl < 0.45 and a second window for 
(kl > 0.96. Results for cases with W = 0, as in case A, are symmetric in k as noted 
earlier by Leibovich & Ma. For case B, soliton windows exist in -0.3 < k < 0.8, in 
k > 1.2 and in k < - 1. For both cases longwave and shortwave solitons are possible : 
there are, however, bands of intermediate wavelengths in which solitons are excluded. 

6. Failure of the nonlinear Schrodinger equation for very long slow waves 
If we consider carrier waves with wavenumber k, --f 0, then the previous analysis 

breaks down in a crucial way, which is associated with the non-analyticity of the linear 
dispersion relation at  k = 0. It is of course true that the nonlinear Schrodinger 
equation (probably) always needs to be formally replaced in this limit, but when the 
dispersion relation is analytic the issue is incidental as shown by Davey (1972). For 
a conservative system with o ( k )  analytic a t  k = 0, ,& = 0. As Davey shows the 
appropriate replacement is the Korteweg-de Vries (KdV) equation but the close 
connections of the solitary wave solutions of the KdV and NLS stressed by Davey 
shows that there are no essentially new features arising. 

In the present case, the slow branch dispersion relation has a singularity at  
k = 0, and for Iml = 1 and small k,  it gives 

as may be seen from (41). Thus ,L2(k0)+ 00 as k,+O, although it does so slowly, and 
the consequences are more interesting. 

The perturbation procedure leading to the NLS contemplates ,L2 = O(1) as E + O  
uniformly in k,. In point of fact, the analysis assumes the validity of the Taylor series 
o ( k ,  + E K )  = wo + eCg(ko) K +  e2,k(k0) K~ + . . . , for K = O( l ) ,  in which case the spatial and 
temporal scales chosen are appropriate. Evidently this expansion fails to provide an 
appropriate local picture if k, = EK = O ( E )  when the carrier wave is as long as the 
modulation envelope, so that a breakdown may be expected for lkol = O ( E ) .  The 
non-analyticity of the dispersion relation is due to the unboundedness of the fluid 
and to the irrotational nature of the motion for radial distances large compared to 
the vortical core, and would not arise for fluid contained in a tube with radius 
comparable to the core size (strictly speaking, any finite tube radius would do but 
the accuracy of approximation found presumably is severely affected if the tube is 
much larger than the core). 

A similar failure of an amplitude equation was encountered by Leibovich (1970), 
and we can proceed in a similar way. The changes required begin in (9), where we 
take the linear phase q? simply to be m0; thus we expand the velocity vector in a 
Fourier series in 8, but do not a priori assume normal-mode behaviour in z or time. 
To lowest order, the motion sought is independent of z and t ,  and represents a bodily 
displacement and rotation of the entire vortex column. Time evolution and axial 
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spatial dependence are weak, and we therefore assume that the perturbation velocity 
vector depends on a slow axial variable 

z = 62, 

with 6 to be determined so that nonlinear terms can ultimately be balanced, and a 
sequence of slow times 

71 = g1(6, 6 )  t ,  7 2  = g2(S, 6 )  t ,  . . . , 
where we suppose for the moment that S and E are independent small parameters with 
8-' measuring the initial axial length of the perturbations and E their amplitudes, 
and the gi are gauge functions vanishing as either 6 or e vanish. Now the velocity 
is 

u ( r )  + wr, e, z, TI, 7 2 %  . . . ,a, €1, 
and u is developed in a series of gauge functions vanishing with 6 and E .  To lowest 
order 

u = u, = a, (r )  eims A ( 2 ,  71, . . .), 
with Iml = 1,  where the radial component of f i , (r)  is til = Q ( r ) ,  which may be seen from 
the analysis of $3. Thus, the complete vector at lowest order is 

u1 = A(Q(r ) ,  i(rQ'+O), iW') eie+c.c,, 

where we have taken m = 1 with no further loss of generality. As in $3, we note that 
for large radial distances, the flow is irrotational to all algebraic orders in the small 
parameters and now the outer variables are Z and p = Sr. In  these variables, the 
velocity is described by a potential u = V#7 and 

Following Leibovich (1970), we work with the Fourier transform with respect to 2, 
written as 

3 = Sm #(p,  e , Z ,  T )  e-iaz dZ. 
- W  

Assuming 

were K ,  is the modified Bessel function of order m. 
The analysis now follows the procedure used by Leibovich (1970). We omit the 

details, but note that consistent matches are required between the inner and outer 
approximations as in $3. I n  fact, the analysis of $3  produces the linear parts of the 
expansions required, and the dispersion relation found there gives, upon replacement 
of w by igl(S,e)(a/a7,), the Fourier transform of the linear contribution to the 
evolution equation for A .  If the Fourier transform of A is X(a, 7,, 72, . . .), then 

[ ( S E J  1 ax r 
a7, 4n 

ig, -+-S2a2 ln - +K--y,  K =  0, 

where K is defined in (37). The nonlinear terms resonant with the eis component are 
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unchanged in form from $ 2 ,  and therefore lead to the need for a slow time r2 with 
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where C(0) is the value of v̂  evaluated a t  k = 0. Thus, in terms of the original time 
variable 

ax r 
at 4x 

i - + - S2a2 [In (&) + K - 7.1 X+ e2C(0) AIAI2 = 0. 

Let 

and r = e2t, then 

i aA -+ ar 2xlnS-l Irn --m a2[In(&)+K-~~]  xe iaz  da+v^(O)AIAI2 = 0. (81) 

If we were to ignore terms O(ln(al/ln6-1) as 6+0, then the coefficient multiplying 
A i n  this equation would simplify to a2, and we would revert to the NLS. It is well 
known, however, that in asymptotic approximations terms involving the logarithm 
of small quantities should not be separated from O(1) terms. Furthermore, this would 
neglect the term a2 In 1aI-l which dominates the In 6-' term for that portion of the 
integration interval for which la1 < 6. For both of these reasons, we retain the 
grouping as shown. Furthermore, as in Leibovich (1970) we note that 

with an error of O ( L  In L-l) as L+O where L = 61al. There is, therefore, no loss in 
accuracy in making this replacement for the relevant terms in (81) (there is even the 
prospect that continuing the approximation procedure to higher orders would 
produce additional contributions agreeing with the series for KO for small argument). 
With this done, the equation for A ( 2 ,  r )  is 

Since the integral term is O(ln6-') as 6+0, the integral must be retained if 
which shows that a balance with nonlinear terms occurs now for 

= 0(1), 

B = 6(ln6-'):. (84) 

With this choice, the a2A/i3Z2 term in (83) is formally negligible in the limit &-to but, 
for the reasons previously stated concerning the treatment of logarithmically small 
terms, we retain it. 

Very long waves apparently are not determined entirely locally when the outer 
flow is irrotational and infinite. Instead, they are controlled by an integrodifferential 
equation that links local evolution with the motion of distant fluid elements in the 
core. That this general characteristic should emerge is perhaps not surprising, since 
the Biot-Savart formula for the motion of a vortex filament of zero core area has 
this feature. 

Axisymmetric long waves in vortices embedded in an infinite irrotational fluid, a 
case considered by Leibovich (1970), lead to the same integral appearing in (83). The 
nonlinear term is AdA/aZ rather than IAI3A. I n  his analysis of the connections 
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between the NLS equation and the Kortewegae Vries equation, Davey (1972) 
observes that the cubic nonlinearity and the product AaAli3.Z are connected, since 
the former term is an approximation to the latter for waves centred on a carrier wave 
of finite length. Here, although k+O,  our waves are still centred on a wave of finite 
wavenumber, since the azimuthal wavenumber is not taken to be zero. 

7. Conclusions 
Leibovich & Ma found an m = - 1 soliton window on the primary fast branch for 

case A ((18) with W, = 0, r/2n = 1, a2 = 1) in the approximate range 0.68 < k < 1. 
We can compare with present results (figure 10) for the corresponding window for 
this flow for the slow branch. There are two of these ; the longwave window occupies 
the approximate band Ikl < 0.45 and clearly does not overlap with the fast branch 
window. The second, given approximately by Ikl > 0.96 appears to overlap, but just 
barely. If the overlap is genuine, and not due to numerical errors, then it would 
indicate the possible propagation of two wave packets with different speeds, but 
centred about the same carrier wavenumber. 

We have not established soliton windows on fast branches in this paper, and so 
we are unable to say whether there are overlaps between fast and slow branch 
windows for case B. This case was of course chosen because of its relationship with 
the experiments of MHR. We do not attempt here to analyse their experimental data 
in the light of present results. We note only that the range of wavenumbers for which 
'kink' waves were observed seems to be roughly 0.25 < k < 0.35. If the profiles of 
case B do properly fit their data, then this range falls within the slow branch soliton 
window, as may be seen from figure 11. Waves outside a soliton window are of course 
observable, they merely spread and ultimately decay due to dispersive effects. Waves 
within a window would be expected to be more robust, persist (as solitons) much 
longer, and therefore figure more prominently in observations. 

Our analysis for long waves has revealed results for the wave propagation 
characteristics for arbitrary concentrated vortices, with or without axial velocities 
of arbitrary form. The explicit results obtained should be of general value for future 
investigations. The dispersion relations (41) and (56) allow us to infer simple rules 
about the geometry and motion of constant-phase surfaces of the slow and the fast 
waves. The intersection of a constant-phase surface with a cylinder a t  fixed radius 
r is the helix 

kz + rnB - wt = constant. 

For the slow waves, we may substitute (41) to give 

and Iml = 1. For all radial locations and fixed axial location, the constant-phase 
surface rotates slowly with rigid-body angular velocity 

"B--Lk2{ln(~)+K-ye)  - 
dt 4n 

For our discussions here, let us now adopt the convention that the orientation of 
the z-axis is chosen so that increasing z is in the direction of the axial component 
of vorticity of the basic flow. (The direction of the basic flow axial vorticity cannot 
change with r without violating Rayleigh's criterion for stability, and we therefore 
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FIGURE 12. Top part of figure shows the geometry and motion of phase fronts for slow waves, and 
the bottom part for fast waves. In  each case the drawing in the centre is a view along the vortex axis 
in the direction of the basic flow axial vorticity. The sense of rotation of fluid particles in the basic 
flow is shown in the centre figure by the solid curve, and the sense of rotation of phase fronts by 
the dashed curve. Slow waves propagating in the direction of the basic flow axial vorticity have 
phase fronts with a right-hand helix sense, those propagating in the opposite direction have 
a left-hand twist. For fast waves (lower panel), the sense of twist and propagation direction depend 
on the sign of W"(0) (assumed in the figure non-zero); the left-hand drawing shows the case with 
W"(0) < 0, for which the twist is left-handed and the phase fronts advance in the direction of the 
basic flow axial vorticity. The right-hand figure shows the case W(0) > 0, where the propagation 
direction and twist are reversed. 

assume that the axial vorticity is one-signed.) Thus Q, and r are by definition 
positive, and so slow waves rotate (slowly) in a sense opposite to that of the rotation 
of fluid particles in the basic vortex. Furthermore, since 

de k 
dz m' 
- = -- 

and 

waves which propagate in the direction of z-increasing have mk < 0 and hence 
de/dz > 0;  that is, phase fronts propagating in the direction of the basic flow axial 
vorticity have an intersection with a cylinder in the shape of a helix with a right-hand 
twist. Those propagating in the direction opposed to the basic axial vorticity have 
a left-hand twist (de/dz < 0). 

For long fast waves, the helix is determined by the conditions (56a) with k+O,  
or 

kz + me - mQ, t = constant. 

All waves in the fast branches have phase fronts that rotate, at  each radius r ,  with 
angular speed 

deldt = Q,, 

that is, at  a fixed axial station, a constant-phase surface rotates with the same angular 
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speed as do fluid particles in the basic flow at that radial location. Phase surfaces 
move at the (fast) speed (dz/dt),,,,, = (m/k)Q, .  If W, = 0, waves propagating in 
the direction of z-increasing have a left-hand helix sense, while those propagating 
in the direction of decreasing z have a right-hand helix sense. If W, =i= 0, the form is 
further restricted since (56c) must apply. There are two cases to consider: (i)  W, < 0 
and (ii) W, > 0. If W, > 0, (i) is jetlike while (ii) is wakelike near the axis, while if 
W, < 0, then (i) is wakelike while (ii) is jetlike. In case (i), condition (56c) admits only 
waves with km > 0 (or k /m > 0), so that phase surfaces propagate only in the direc- 
tion of z-increasing and have a left-hand helix sense. In  case (ii), only waves with 
km < 0 are allowed, and these propagate in the negative z-direction and have a 
right-hand helix sense. The helix sense in all fast-wave cases may be simply summed 
up: the helix sense is opposite to that of the vortex lines in the basic flow. 

Figure 12 is a pictorial representation of the helix sense, and the propagation and 
rotation directions of slow and fast waves. 

One line of enquiry of potential interest is the question of interactions between 
modes obtained here and m = 0 (axisymmetric) modes. Axisymmetric modes have 
received more attention than have non-axisymmetric ones. In  particular, results of 
some generality (applying without restriction to wavenumber) are known about the 
dispersion relations for axisymmetric waves (Leibovich 1979). Furthermore, both 
m = 0 and Iml = 1 modes are necessarily involved in perturbations leading (in the 
most drastic cases) to vortex breakdown (see Leibovich 1984 for a discussion), so a 
study of their interaction would be of particular interest. 

This work was supported in part by the US Office of Naval Research under contract 
SRO IV, and in part by the US Army Research Office under a contract to the Cornell 
University Mathematical Sciences Institute. 
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